[Total No. of Questions: 09]

[Total No. of Pages:]

Uni. Roll No.

Program: B.Tech. (Batch 2018 onward)

Semester:4th

Name of Subject: Mathematics-111

Subject Code: BSCE- 101

Paper ID: 16180

Scientific calculator is NotAllowed

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice

3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

- Write the negation of the disjunction: Ram is in class XI or Arun is in clas XII.
- State and prove linear property of Laplace Transform.
- c) Write the complex form Fourier integral.
- d) Define a group.
- State Modulation theorem of Fourier Transform.
- Define Lattice with one example.

Part - B

[Marks: 04 each]

Q2. Evaluate the following:

(i)
$$L^{-1}(\frac{1}{s^2(s^2-a^2)})$$

(i)
$$L^{-1}(\frac{1}{s^2(s^2-a^2)})$$
 (ii) $L^{-1}(\log \frac{s+1}{s-1})$

Q3. Evaluate the following:

(ii)
$$L(\cos^3 2t)$$

(ii)
$$L(t\sqrt{1+\sin t})$$

- Find Fourier sine integral of $f(x) = e^{-\beta x}$. Q4.
- Q5. Construct a truth table for the compound proposition \sim (p V q) V (\sim p $\land \sim$ q).

Page 1 of 2

P.T.O.

Q6. If $A=\{1,2,3,4\}$ and consider the relation $R=\{(1,1),(1,2),(1,3),(2,2),(3,2),(3,3),(4,2),(4,3),(4,4)\}$ Is R a partial order relation? Justify your answer .

Q7. Prove that the fourth roots of unity 1, -1, i, -i form an abelian multiplicative group.

Part - C

[Marks: 12 each]

- **Q8.** (a) Prove that the necessary and sufficient condition for a non-empty subset H of a Group G,*) to be a subgroup is $a \in H$, $b \in H \Rightarrow a * b^{-1} \in H$. (6)
 - (b) Prove that the order of each subgroup of a finite group is a divisor of the order of the group.

OR

- (a) Prove that in a distributive Lattice, if an element has a compliment then this compliment is unique.
- (b) Prove that the product of two Lattices is a Lattice.

(6)

Q9. Solve the following differential equation using Laplace transform:

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}sint, \ x(0) = 0, \ x'(0) = 1.$$

OR

Solve
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $x > 0$, $t > 0$, subject to the conditions $u_x(0,t) = 0$, $u(x,t)$ is bounded and $u(x,0) = \begin{cases} x \\ 0 \end{cases}$, $0 \le x \le 1$, $x > 1$.
